Annex 1 Drainage Proposal

Drainage Proposal

Proposed Temporary Open Storage of Construction Material and Machinery with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land in "Agriculture" Zone, Lots 357 (Part) and 359 (Part) in D.D.87, Hung Lung Hang, N.T.

Drainage Proposal

August 24

Table of Content

Drainage	Pro	posal

1.	Intro	oduction	1
1	.1	Background	1
1	.2	The Site	1
2.	Dev	elopment Proposal	2
2	.1	The Proposed Development	2
3.	Asse	essment Criteria	2
4.	Prop	posed Drainage System	5
5.	Con	clusion	5

List of Table

Table 1 - Key Development Parameters	2
Table 2– Design Return Periods under SDM	2

List of Figure

- Figure 1 Site Location Plan
- Figure 2 Existing Drainage Plan
- Figure 3 Proposed Drainage System
- Figure 4 Catchment Plan

List of Appendix

- Appendix A Channel Design Calculations
- Appendix B Development Layout Plan
- Appendix C Reference Drawings

Drainage Proposal

1. Introduction

1.1 Background

- 1.1.1 The applicant seeks planning permission from the Town Planning Board (the Board) to use Lots 357 (Part) and 359 (Part) in D.D. 87, Hung Lung Hang, New Territories (the Site) for 'Proposed Temporary Open Storage of Construction Material and Machinery with Ancillary Facilities for a Period of 3 Years and Associated Filling of Land'
- 1.1.2 This Drainage Proposal aim to support the development in drainage aspect.

1.2 The Site

- 1.2.1 The Site has a total area of about 3,110 m². The site is partially cover by vegetation and partially paved. The site location plan is shown in **Figure 1**.
- 1.2.2 The existing site ground level is around +25.5 to +25.9 mPD. The site is proposed to all paved with not more than 200mm hard pavement from +25.7 to +26.1 mPD.
- 1.2.3 An existing channel is running from southwest to northeast by the side of the site. Existing Drainage Plan are shown in **Figure 2** for reference.
- 1.2.4 Proposed Development Layout plan is shown in **Appendix B** for reference.

Drainage Proposal

2. Development Proposal

2.1 The Proposed Development

2.1.1 The total site area is approximately 3,110 m². The indicative development schedule is summarized in **Table 1** below for technical assessment purpose. The catchment plan is shown in **Figure 4**.

Proposed Development	
Total Site Area (m ²)	3,110
Paved Area (m ²)	3,110
Assume all proposed site area as paved area	
for assessment purpose	
Table 4 Key Development Dependent	

Table 1 - Key Development Parameters

3. Assessment Criteria

3.1.1 The Recommended Design Return Period based on Flood Level from SDM (Table 10) is adopted for this DIA. The recommendation is summarized in **Table 2** below.

Description	Design Return Periods
Intensively Used Agricultural Land	2 – 5 Years
Village Drainage Including Internal Drainage System under a polder Scheme	10 Years
Main Rural Catchment Drainage Channels	50 Years
Urban Drainage Trunk System	200 Years
Urban Drainage Branch System	50 Years

Table 2– Design Return Periods under SDM

3.1.2 The proposed drainage system intended to collect runoff from internal site and external catchment.1 in 10 years return period is adopted for the drainage design.

Drainage Proposal

- 3.1.3 Stormwater drainage design will be carried out in accordance with the criteria set out in the Stormwater Drainage Manual published by DSD. The proposed design criteria to be adopted for design of this stormwater drainage system and factors which have been considered are summarised below.
 - 1. Intensity-Duration-Frequency Relationship The Recommended Intensity-Duration-Frequency relationship is used to estimate the intensity of rainfall. It can be expressed by the following algebraic equation.

$$i = \frac{a}{(t_d + b)^c}$$

The site is located within the North District Zone. Therefore, for 10 years return period, the following values are adopted.

а	=	454.9
b	=	3.44
с	=	0.412
		(Corrigendum_No.1_2024)

2. The peak runoff is calculated by the Rational Method i.e. $Q_p = 0.278 \text{CiA}$

where	Q_p	=	peak runoff in m³/s
	C	=	runoff coefficient (dimensionless)
	i	=	rainfall intensity in mm/hr
	А	=	catchment area in km ²

3. The run-off coefficient (C) of surface runoff are taken as follows:

1.	Paved Area:	C = 0.95
2.	Unpaved Area:	C = 0.35

Drainage Proposal

4. Manning's Equation is used for calculation of velocity of flow inside the channels:

Manning's Equation: $v = \frac{R^{\frac{1}{6}}}{n} R^{\frac{1}{2}} S_f^{\frac{1}{2}}$

Where,

V = velocity of the pipe flow (m/s)

S_f = hydraulic gradient

n = manning's coefficient

R = hydraulic radius (m)

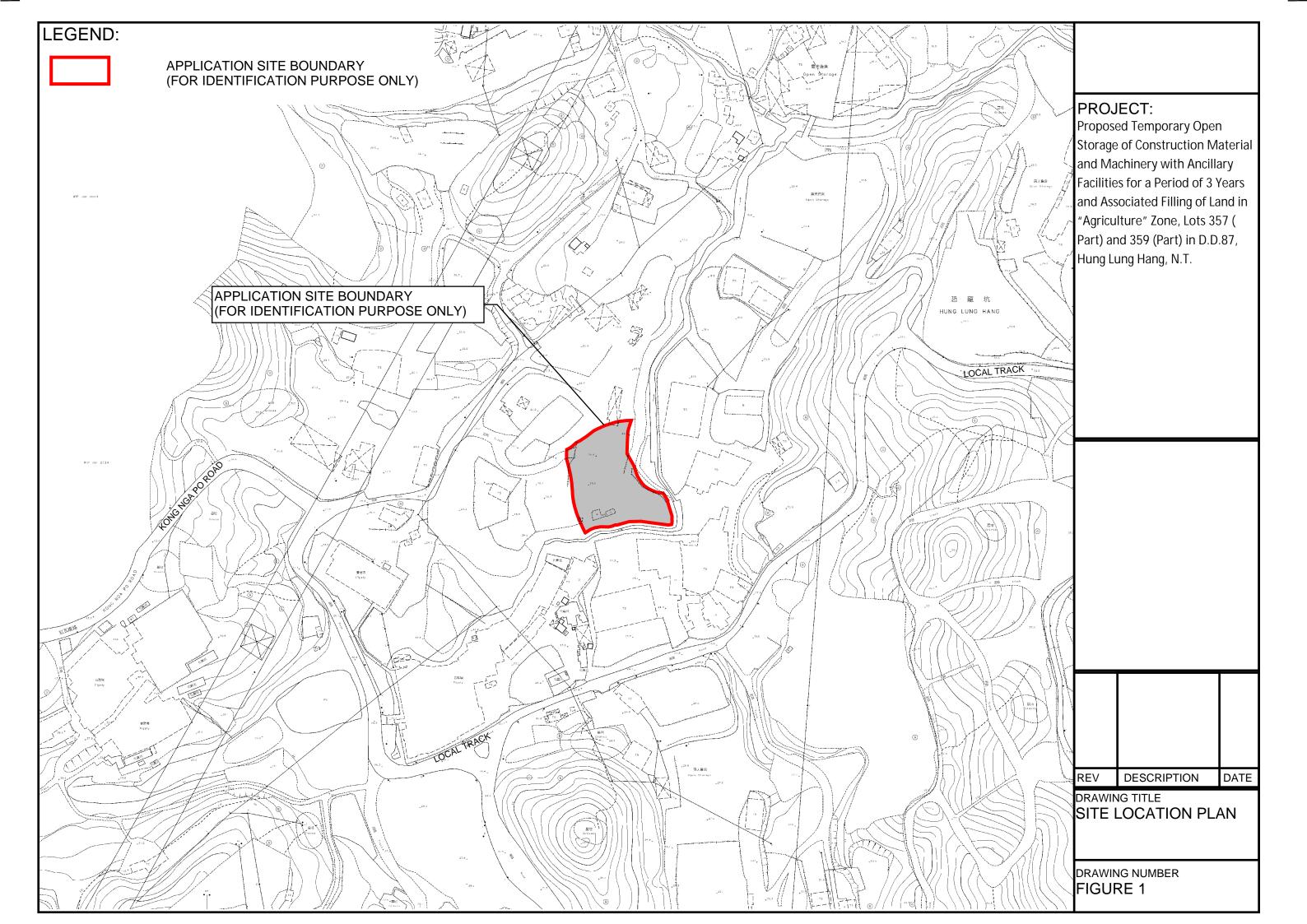
5. Colebrook-White Equation is used for calculation of velocity of flow inside the pipes:

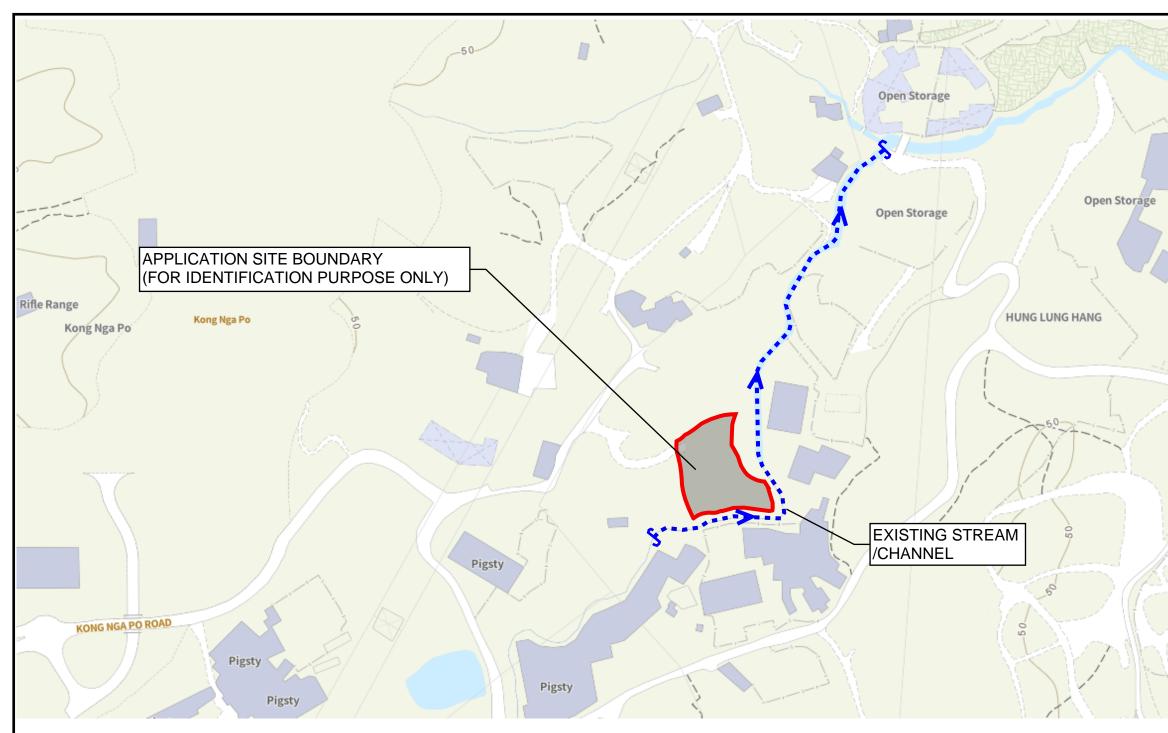
Colebrook-White E	quatio	n:	$\underline{v} = -\sqrt{32gRS} \log \log \left(\frac{k_s}{14.8R} + \frac{1.255v}{R\sqrt{32gRS_f}}\right)$
where,	V S _f v D R	= = = =	velocity of the pipe flow (m/s) hydraulic gradient roughness value (m) kinematics viscosity of fluid pipe diameter (m) hydraulic radius (m)

Drainage Proposal

4. Proposed Drainage System

4.1. Proposed UChannel

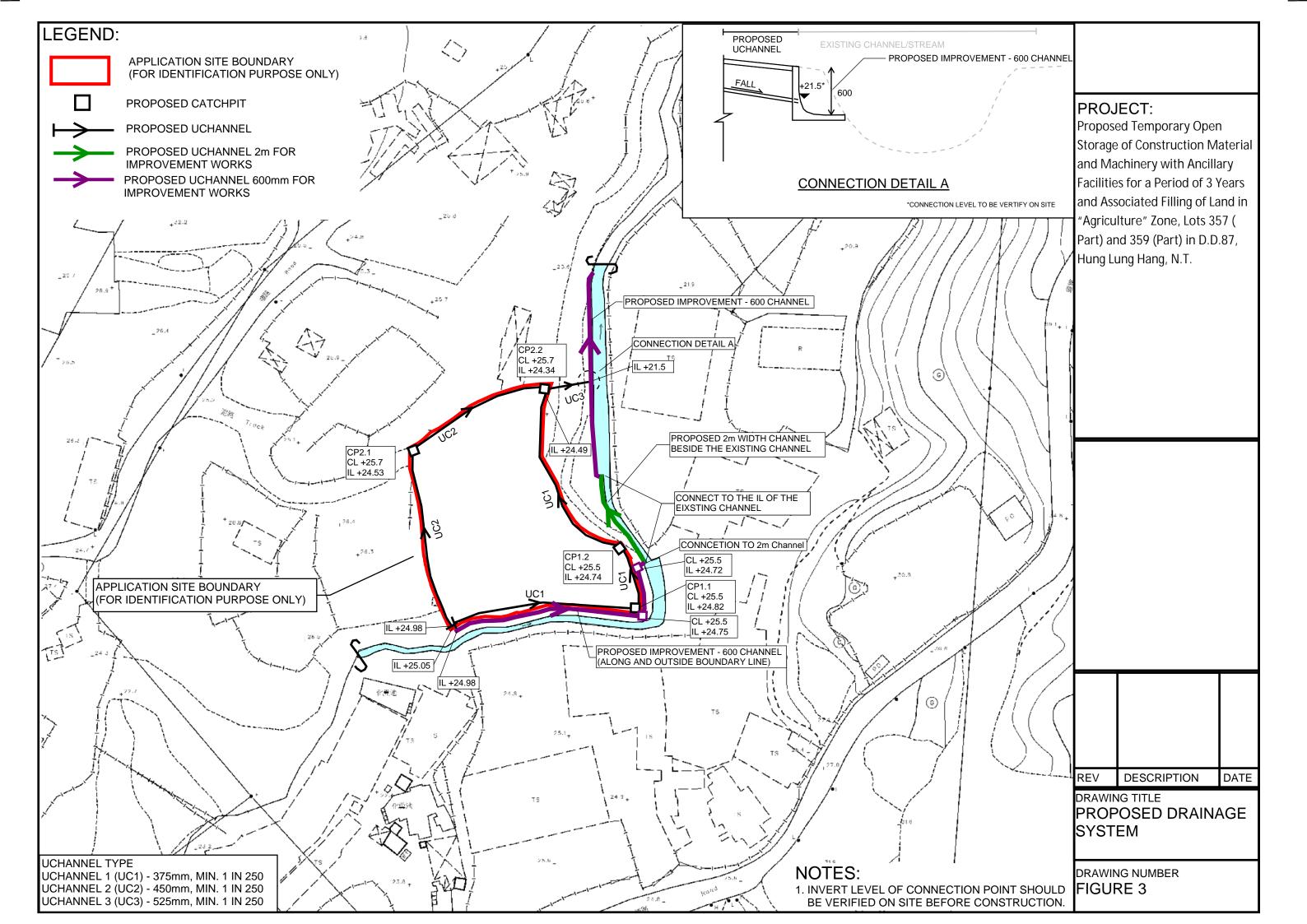

- 4.1.1 Proposed U-channels are designed for collection of runoff within and near the Development Site. Please refer to the **Figure 4** for proposed catchment plan. The U-channels are proposed to be connected to existing stream at the east. The design calculations of proposed UChannels are shown in **Appendix A**.
- 4.1.2 The alignment, size, gradient and details of the proposed drains are shown in **Figure 3**.
- 4.1.3 Further to the discussion with DSD, the following improvement works are proposed.
 - i. additional 2m width channel at critical section of the existing channel.
 - ii. additional 600mm width channel along the site boundary at south (connection to 2m channel at item i)..
 - iii. additional 600mm width channel along the site boundary at the east (connection to 2m channel at item i).
- 4.1.4 The increase in capacity due to the proposed 2m width and 600mm channel are shown in **Appendix A**. The proposed channels alignment are shown in **Figure 3**.
- 4.1.5 The reference standard drawings of drains are shown in **Appendix C**.

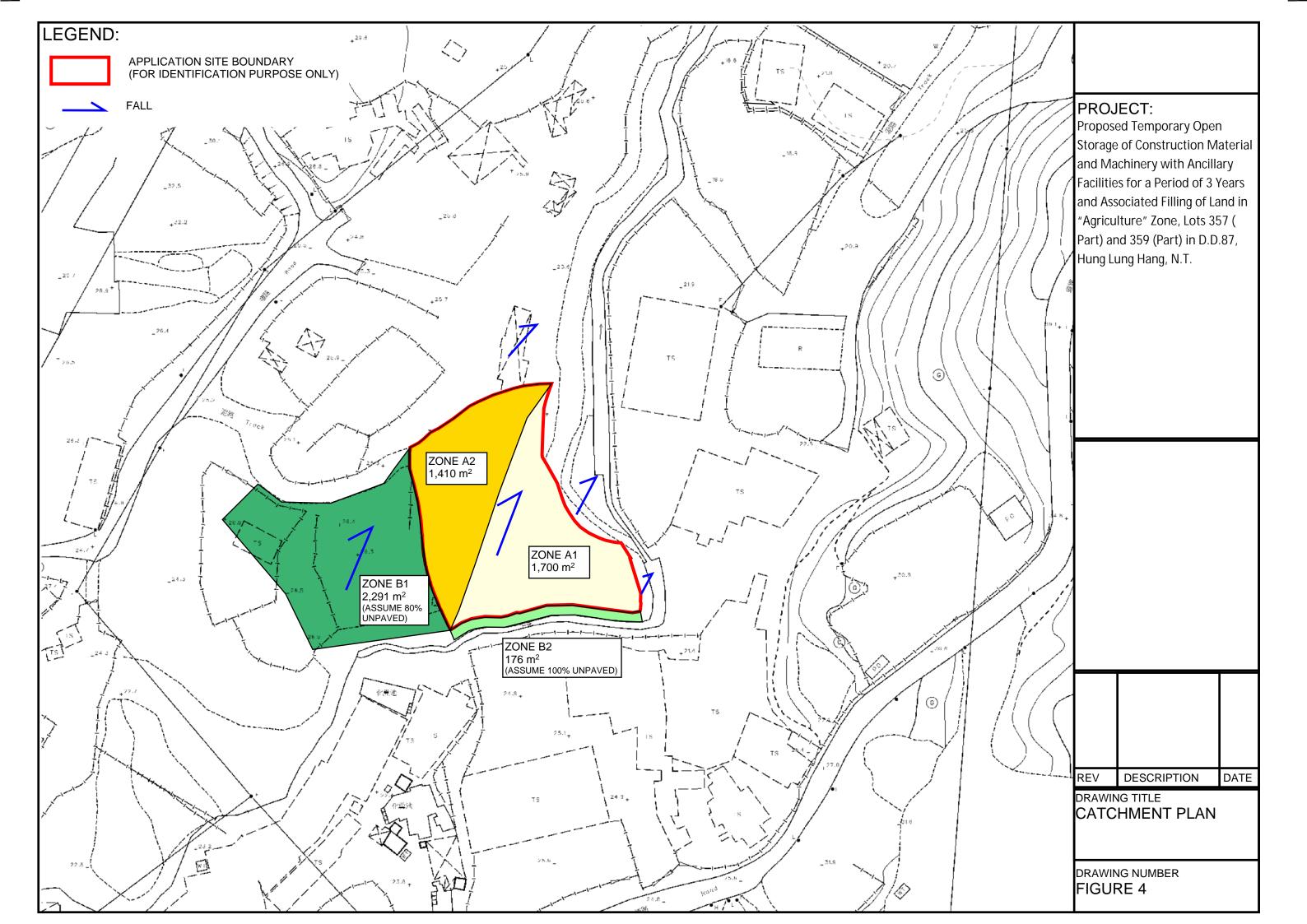

5. Conclusion

5.1.1 Drainage study has been conducted for the Proposed Development. With implementation of proposed drainage system, no significant drainage impact is anticipated.

- End of Text -

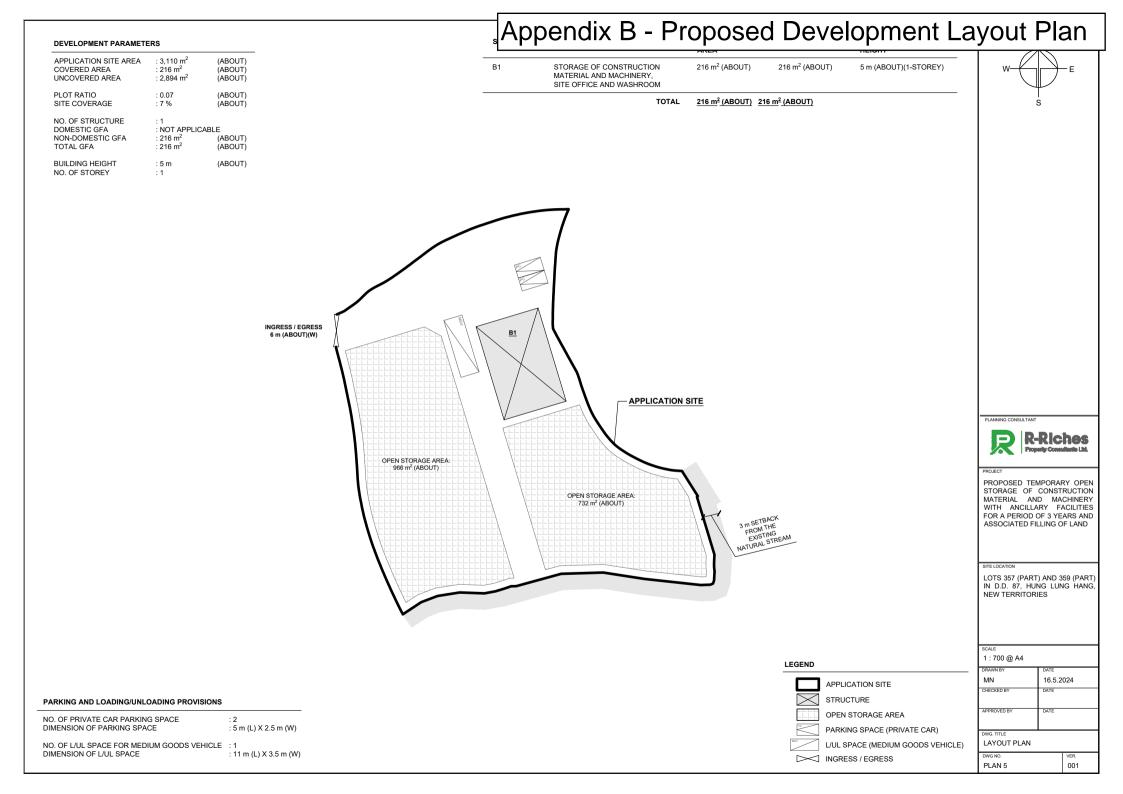
FIGURES

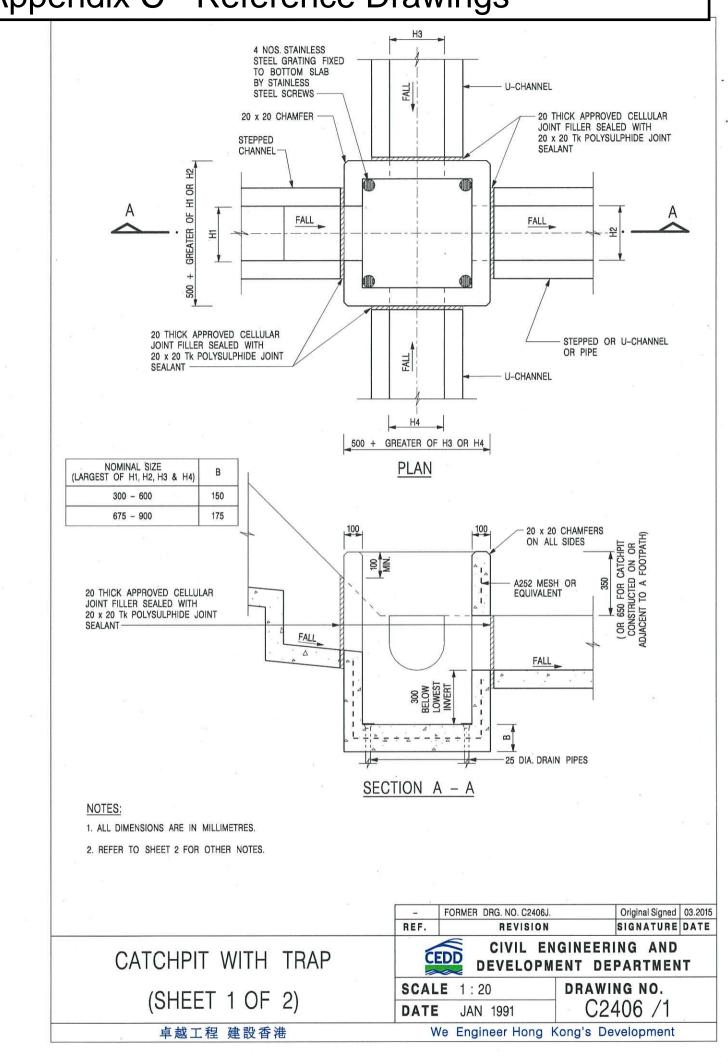

LEGEND:

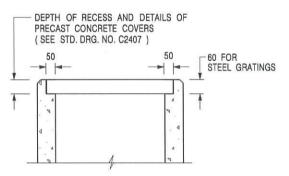

	Combined Manhole
ъ	Overflow (Combined)
—	Pipe (Combined)
	Interface Valve Chamber
	Sewer Manhole
	Oil / Petrol Interceptor
ъ	Overflow (Sewer)
-	Pipe (Sewer)

н	Tapping Point (Sewer)	н
	Sewer Terminal Manhole	o
•	Catchpit	<i>7222</i>
↦	Inlet	<i>7223</i>
0	Storm Water Manhole	
+-(Outlet	8000
_	Pipe (Storm)	
-	Sand Trap	

н	Tapping Point (Storm)
0	Storm Water Terminal Manhole
7223	Tunnel Protection Zone (100m / 200m)
FZZ2	Tunnel Protection Zone (General Range)
	Tunnel / Box Culvert (Sewer)
8888	Tunnel / Box Culvert (Storm)
	EXISTING STREAM/CHANNEL

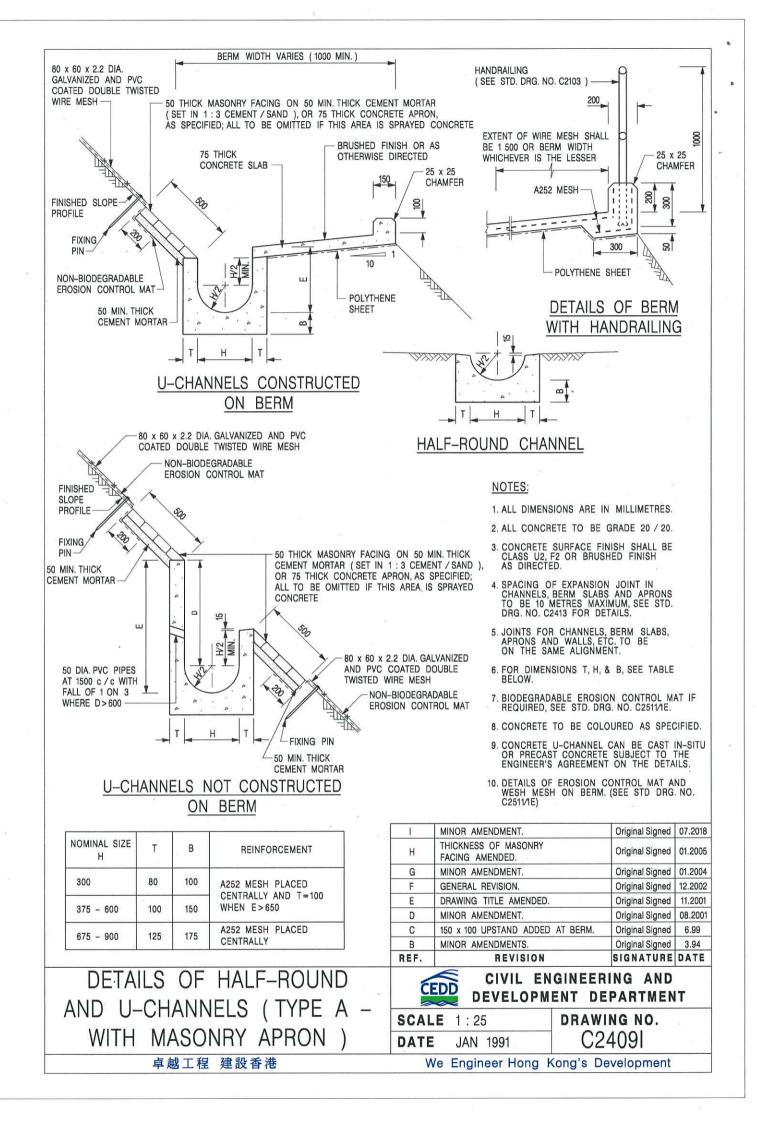


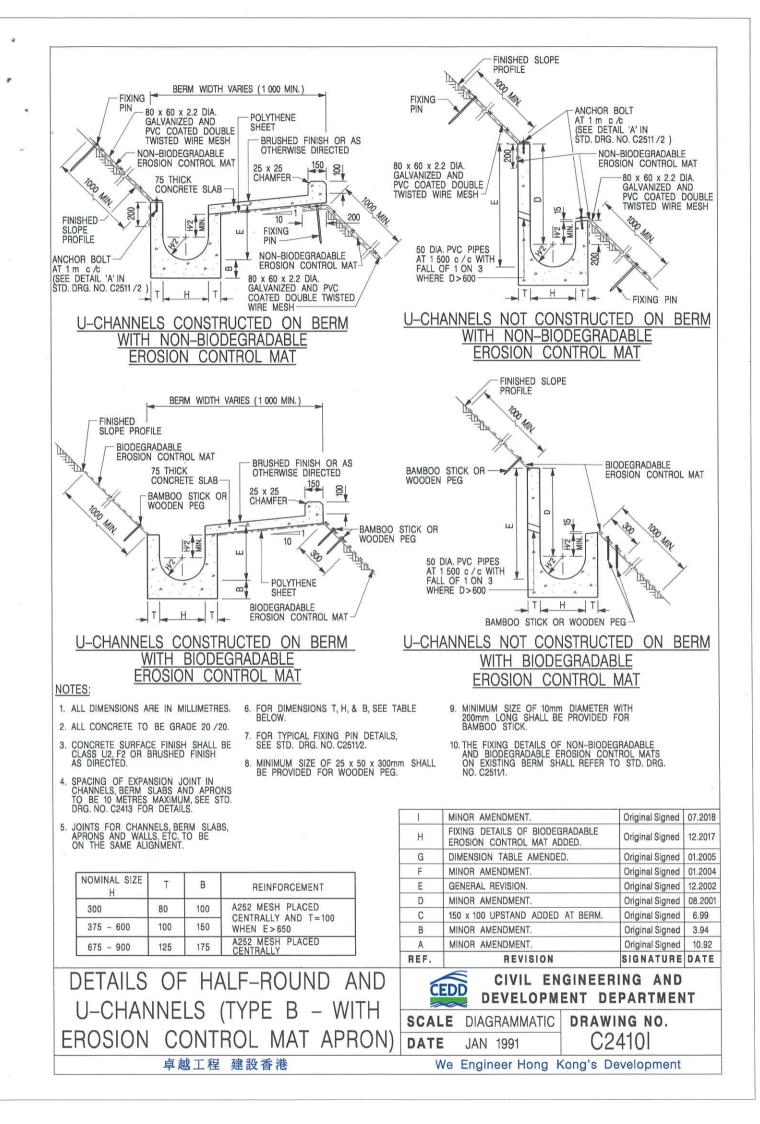


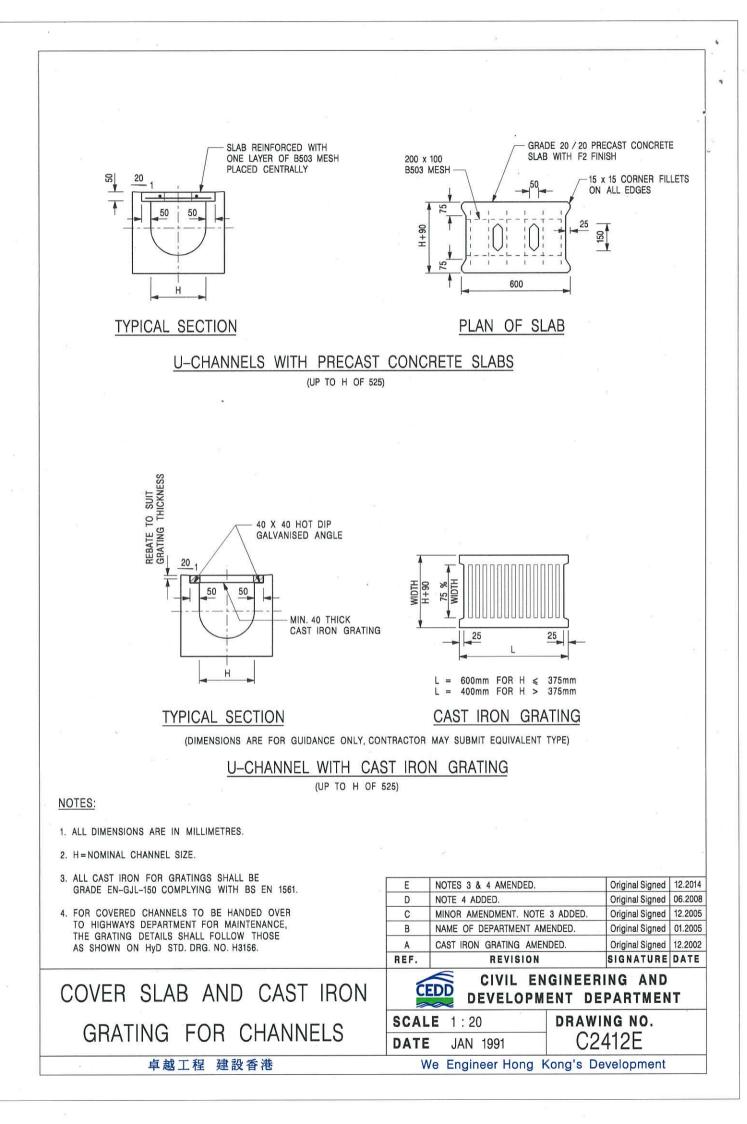

Appendix

ndix A - Channel						
U Channel 1 (Zone A1 + B2)						
Runoff Estimation					Ī	
Design Return Period	1700 170 0	1 in	10	years	Ī	
Paved Area Unpaved Area	1700 + 176 x 0 176 x 1 =		1700 176	(m2) (m2)		а
Total Equivalent Area	1700 x 0.95 + 176 x 0.35 =		1677	(m2)		$* i = \frac{a}{(t_d + b)^c}$
Time of Concentration			5	min		(va · vy
Rainfall Intensity, I * Design Discharge Rate, Q	0.278 x 1677 x 189 / 1000000 =		189 0.088	mm/hr m3/s		
					1	
U Channel					T	
Channel Size			375	(mm)	l	
Gradient Area	$\pi \times 0.38^2 / 8 + 0.38 \times 0.38 / 2 =$	1 in	250 0.126	(m2)		
Wetted Perimeter	π x 0.38 / 2 + 0.38/2 x 2 =		0.964	(m)		
R Velocity $v = \frac{R^{\frac{1}{6}}}{n} R^{\frac{1}{2}} S_f^{\frac{1}{2}}$	0.126 / 0.964 =		0.208 1.02	(m)		
Capacity			0.127	m/s m3/s		
Utilization	0.088 / 0.127	=	69.07	%	ОК	(less than 90%, for 10% siltation allowand
U Channel 2 (Zone A2 + B1)						
Runoff Estimation					Ī	
Design Return Period		1 in	10	years	Ī	
Paved Area Unpaved Area	1410 + 2291 x 0.2 = 176 + 2291 x 0.8 =		1868 2009	(m2) (m2)		<i>a</i>
Total Equivalent Area	$176 + 2291 \times 0.8 =$ $1868 \times 0.95 + 2009 \times 0.35 =$		2009 2478	(m2) (m2)		* $i = \frac{a}{(t_d + b)^c}$
Time of Concentration			5	min		$(u_d + b)^2$
Rainfall Intensity, I * Design Discharge Rate, Q	0.278 x 2009 x 189 / 1000000 =		189 0.130	mm/hr m3/s		
un					•	
U Channel					Ι	
Channel Size			450	(mm)	Ī	
Gradient Area	$\pi \times 0.45^{2} / 8 + 0.45 \times 0.45 / 2 =$	1 in	250 0.181	(m2)		
Wetted Perimeter	$\pi \times 0.45 / 2 + 0.45 / 2 \times 2 =$		1.157	(m2) (m)		
R R	0.181 / 1.157 =		0.156	(m)		
Velocity $v = \frac{k}{n} R^{\frac{3}{2}} S_f^{\frac{3}{2}}$ Capacity			1.15	m/s	1	
Capacity			0.207	m3/s		
Utilization Utilization Utilization Utilization U Channel 3 (Zone [A1 + B2]	0.13/0.207 + [A2 + B1])	=	0.207 62.77] ок]	(less than 90%, for 10% siltation allowand
Utilization Utilization UChannel 3 (Zone [A1 + B2]) Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, 1 *	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3568 x 0.95 + 2185 x 0.35 =	= 1 in	10 3568 2185 4154 5 189	m3/s % years (m2) (m2) (m2) min mm/hr		(less than 90%, for 10% siltation allowand • $i = \frac{a}{(t_d + b)^c}$
Utilization U Channel 3 (Zone [A1 + B2]) Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Time of Concentration	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 =		10 3568 2185 4154 5	m3/s % years (m2) (m2) (m2) min		
Utilization Utilization UChannel 3 (Zone [A1 + B2]) Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, I * Design Discharge Rate, Q	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3568 x 0.95 + 2185 x 0.35 =		10 3568 2185 4154 5 189	m3/s % years (m2) (m2) (m2) min mm/hr		
Utilization Utilization UChannel 3 (Zone [A1 + B2]) Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, 1 * Design Discharge Rate, Q U Channel	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3568 x 0.95 + 2185 x 0.35 =		10 3568 2185 4154 5 189 0.218	m3/s % years (m2) (m2) (m2) (m2) (m2) min mm/hr m3/s		
Utilization Utilization Utilization UChannel 3 (Zone [A1 + B2]) Design Return Period Paved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, I* Design Discharge Rate, Q UChannel Channel Size Gradient	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3668 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 =		62.77 10 3568 2185 4154 5 189 0.218 525 250	m3/s % years (m2) (m2) (m2) (m2) min mm/hr m3/s (mm)		
Utilization Utilization Utilization Utilization Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, 1* Design Discharge Rate, Q UChannel Channel Size Gradient Area	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3568 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 = π x 0.53^2 /8 + 0.53 x 0.53/2 =	1 in	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246	m3/s % years (m2) (m2) (m2) (m2) (m2) min mm/hr m3/s (mm) (m2)		
Utilization Utilization UChannel 3 (Zone [A1 + B2]) Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, 1* Design Discharge Rate, Q UChannel Channel Size Gradient Area Wetted Perimeter Period	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3668 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 =	1 in	62.77 10 3568 2185 4154 5 189 0.218 525 250	m3/s % years (m2) (m2) (m2) (m2) min mm/hr m3/s (mm)		
Utilization Utilization Utilization Design Return Period Paved Area Unpaved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, I* Design Discharge Rate, Q UChannel Channel Size Gradient Area Wetted Perimeter R Velocity $v = \frac{R^{\frac{1}{2}}}{n}R^{\frac{1}{2}}S_{1}^{\frac{1}{2}}$	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3568 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 = π x 0.53^2 /8 + 0.53 x 0.53/2 = π x 0.53 / 2 + 0.53/2 x 2 =	1 in	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182 1.27	m3/s % years (m2) (m2) (m2) min mm/hr m3/s (mm) (m2) (m) (m2) (mm) (m2) (m) (m2) (m) (m) (m) (m)		
Utilization Utilization UChannel 3 (Zone [A1 + B2]) Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, 1* Design Discharge Rate, Q UChannel Channel Size Gradient Area Wetted Perimeter Period	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3568 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 = π x 0.53^2 /8 + 0.53 x 0.53/2 = π x 0.53 / 2 + 0.53/2 x 2 =	1 in	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182	m3/s % years (m2) (m2) (m2) (m2) (m2) (m3/s (mm) (mm) (m2) (m) (m)		
Utilization Utilization Utilization Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, I* Design Discharge Rate, Q Uchannel Channel Size Gradient Area Wetted Perimeter R Velocity $v = \frac{R^{\frac{1}{n}}}{n} R^{\frac{1}{2}} S_{f}^{\frac{1}{2}}$ Capacity Utilization	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3668 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 = $\pi x 0.53^{2}/8 + 0.53 \times 0.53/2 = \pi \times 0.53 / 2 + 0.53/2 \times 2 = 0.246 / 1.35 =$ 0.218 / 0.313	1 in 1 in	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182 1.27 0.313 69.77	m3/s % years (m2) (m2) (m2) (m2) (m2) (m3/s (mm) (m2) (m) (m) (m) (m3/s %	ОК	• $i = \frac{a}{(t_d + b)^c}$ (less than 90%, for 10% siltation allowand
Utilization Utilization Unpact Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, 1* Design Discharge Rate, Q U Channel Size Gradient Area Wetted Perimeter R Velocity $v = \frac{R^{\frac{1}{n}}}{n} R^{\frac{1}{2}} S_{f}^{\frac{1}{2}}$ Utilization 2m Channel (Checking Capa	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3568 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 = $\pi \times 0.53^{2}/8 + 0.53 \times 0.53/2 =$ $\pi \times 0.53 / 2 + 0.53/2 \times 2 =$ 0.246 / 1.35 =	1 in 1 in	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182 1.27 0.313 69.77	m3/s % years (m2) (m2) (m2) (m2) (m2) (m3/s (mm) (m2) (m) (m) (m) (m3/s %	ОК	• $i = \frac{a}{(t_d + b)^c}$ (less than 90%, for 10% siltation allowand
Utilization U Channel 3 (Zone [A1 + B2]) Runoff Estimation Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, I* Design Discharge Rate, Q Channel Channel Size Gradient Area Velocity Velocity $\nu = \frac{R^{\frac{1}{n}}}{n} R^{\frac{1}{2}} S_{f}^{\frac{1}{2}}$ Utilization 2m Channel (Checking Capa U Channel Channel Channel Size Connel	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3668 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 = $\pi x 0.53^{2}/8 + 0.53 \times 0.53/2 = \pi \times 0.53 / 2 + 0.53/2 \times 2 = 0.246 / 1.35 =$ 0.218 / 0.313	1 in 1 in = nnel at	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182 1.27 0.313 69.77 Critical 2000	m3/s % years (m2) (m2) (m2) (m2) (m2) (m3/s (mm) (m2) (m) (m) (m) (m3/s %	ОК	• $i = \frac{a}{(t_d + b)^c}$ (less than 90%, for 10% siltation allowand
Utilization Utilization Utilization Design Return Period Paved Area Unpaved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, I* Design Discharge Rate, Q UChannel Size Gradient Area Wetted Perimeter R Velocity Capacity Utilization 2m Channel (Checking Capa UChannel Size Gradient Area Utilization	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3568 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 = $\pi x 0.53^{2}/8 + 0.53 x 0.53/2 =$ $\pi x 0.53 / 2 + 0.53/2 x 2 =$ 0.246 / 1.35 = 0.218 / 0.313 city for Additional 2m width Char	1 in 1 in	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182 1.27 0.313 69.77 critical 2000 250	m3/s % years (m2) (m2) min mm/mr m3/s (mm) (m2) (m) (m) (m) s ection (mm)	ОК	• $i = \frac{a}{(t_d + b)^c}$ (less than 90%, for 10% siltation allowand
Utilization Utilization Utilization Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, 1* Design Discharge Rate, Q Uthannel Size Gradient Area Velocity $v = \frac{R^{\frac{1}{2}}}{n} R^{\frac{1}{2}} S_{f}^{\frac{1}{2}}$ Utilization 2m Channel (Checking Capa U Channel Size Gradient Area	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3668 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 = $\pi x 0.53^{2}/8 + 0.53 \times 0.53/2 = \pi \times 0.53 / 2 + 0.53/2 \times 2 = 0.246 / 1.35 =$ 0.218 / 0.313	1 in 1 in = nnel at	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182 1.27 0.313 69.77 Critical 2000	m3/s % years (m2) (m2) (m2) (m2) (m2) (m2) (m3/s (m) (m) (m) (m) m/s m3/s % sectio	ОК	• $i = \frac{a}{(t_d + b)^c}$ (less than 90%, for 10% siltation allowand
Utilization Utilization Utilization Utilization Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, 1* Design Discharge Rate, Q Uthannel Channel Size Gradient Area Wetted Perimeter R Velocity $v = \frac{R^{\frac{1}{4}}}{n} R^{\frac{1}{2}} S_{f}^{\frac{1}{2}}$ Capacity Utilization Utilization Utilization Channel Size Gradient Area Wetted Perimeter R Wetted Perimeter R Wetted Perimeter R Wetted Perimeter R	$\frac{1700 + 1868}{176 + 2009 =}$ $3568 \times 0.95 + 2185 \times 0.35 =$ $0.278 \times 4154 \times 189 / 1000000 =$ $\pi \times 0.53^{*}2 / 8 + 0.53 \times 0.53 / 2 =$ $\pi \times 0.53 / 2 + 0.53 / 2 \times 2 =$ $0.246 / 1.35 =$ $0.218 / 0.313$ City for Additional 2m width Chai	1 in 1 in = nnel at	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182 1.27 0.313 69.77 critical 2000 250 3.571 5.142 0.694	m3/s % years (m2) (m2) (m72) min mm/m/m/m3/s (mm) (m2) (m) (m2) (m) (m2) (m) (m3/s) % section (mm) (m2) (m) (m2) (m) (m2) (m) (m2) (m3/s)	ОК	• $i = \frac{a}{(t_d + b)^c}$ (less than 90%, for 10% siltation allowand
Utilization Utilization Utilization Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, 1* Design Discharge Rate, Q Uthannel Size Gradient Area Wetted Perimeter R Velocity Utilization 2m Channel (Checking Capa UChannel Size Gradient Area Wetted Perimeter R Velocity Utilization	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3568 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 = $\pi x 0.53^{2}/8 + 0.53 x 0.53/2 = \pi x 0.53/2 + 0.53/2 x 2 = 0.246 / 1.35 =$ 0.218 / 0.313 city for Additional 2m width Chai $\pi x 2^{A}/8 + 2 x 2/2 = \pi x 2/2 + 2/2 x 2 = 0.246 / 1.35 = 0.218 / 0.313$	1 in 1 in = nnel at	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182 1.27 0.313 69.77 Critical 2000 250 3.571 5.142 0.694 3.10	m3/s % years (m2) (m2) (m2) (m2) (m2) (m2) (m3/s % section (mm) (m2) (m) (m) (m2) (m) (m) (m2) (m) (m) (m) (m) (m2) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	ок n of Existing	• $i = \frac{a}{(t_d + b)^c}$ (less than 90%, for 10% siltation allowand Channel)
Utilization Utilization Utilization Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, I* Design Discharge Rate, Q Uchannel Channel Size Gradient Area Wetted Perimeter R Velocity $v = \frac{R^{\frac{1}{n}}}{n} R^{\frac{1}{2}} S_{f}^{\frac{1}{2}}$ Capacity Utilization	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3568 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 = $\pi x 0.53^{2}/8 + 0.53 x 0.53/2 = \pi x 0.53/2 + 0.53/2 x 2 = 0.246 / 1.35 =$ 0.218 / 0.313 city for Additional 2m width Chai $\pi x 2^{A}/8 + 2 x 2/2 = \pi x 2/2 + 2/2 x 2 = 0.246 / 1.35 = 0.218 / 0.313$	1 in 1 in = nnel at	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182 1.27 0.313 69.77 critical 2000 250 3.571 5.142 0.694	m3/s % years (m2) (m2) (m72) min mm/m/m/m3/s (mm) (m2) (m) (m2) (m) (m2) (m) (m3/s) % section (mm) (m2) (m) (m2) (m) (m2) (m) (m2) (m3/s)	ОК	• $i = \frac{a}{(t_d + b)^c}$ (less than 90%, for 10% siltation allowand Channel)
Utilization Utilization Utilization Design Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, I* Design Discharge Rate, Q Utilization Utilization Utilization 2m Channel (Checking Capa Utilization Utilization 2m Channel Size Gradient Area Utilization Utilization Utilization Utilization Utilization Utilization Utilization	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3568 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 = $\pi x 0.53^{2}/8 + 0.53 x 0.53/2 = \pi x 0.53/2 + 0.53/2 x 2 = 0.246 / 1.35 =$ 0.218 / 0.313 city for Additional 2m width Chai $\pi x 2^{A}/8 + 2 x 2/2 = \pi x 2/2 + 2/2 x 2 = 0.246 / 1.35 = 0.218 / 0.313$	1 in 1 in = nnel at	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182 1.27 0.313 69.77 Critical 2000 250 3.571 5.142 0.694 3.10 11.069	m3/s % years (m2) (m2) (m2) (m2) (m2) (m2) (m3/s % section (mm) (m2) (m) (m) (m2) (m) (m) (m2) (m) (m) (m) (m) (m2) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	ок n of Existing	• $i = \frac{a}{(t_d + b)^c}$ (less than 90%, for 10% siltation allowand Channel)
Utilization Utilization UDesign Return Period Paved Area Unpaved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, 1* Design Discharge Rate, Q UChannel Size Gradient Area Wetted Perimeter R Velocity Utilization UChannel Size Gradient Area Wetted Perimeter R Velocity Utilization 2m Channel (Checking Capa) Utilization 2m Channel Size Gradient Area Wetted Perimeter R Velocity Capacity Utilization 2m Channel Size Gradient Area Wetted Perimeter R Velocity Capacity 6000mm Channel at Connection	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3568 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 = $\pi x 0.53^{2}/8 + 0.53 x 0.53/2 = \pi x 0.53/2 + 0.53/2 x 2 = 0.246 / 1.35 =$ 0.218 / 0.313 city for Additional 2m width Chai $\pi x 2^{2}/8 + 2 x 2/2 = \pi x 2/2 + 2/2 x 2 = 3.571 / 5.142 =$	1 in 1 in = nnel at	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182 1.27 0.313 69.77 Critical 2000 250 3.571 5.142 0.694 3.10 11.069	m3/s % years (m2) (m2) (m2) (m2) (m2) (m2) (m3/s % section (mm) (m2) (m) (m) (m2) (m) (m) (m2) (m) (m) (m) (m) (m2) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	ок n of Existing	• $i = \frac{a}{(t_d + b)^c}$ (less than 90%, for 10% siltation allowand Channel)
Utilization Utilization Utilization Utilization Design Return Period Paved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, I* Design Discharge Rate, Q Utilization Gradient Area Wetted Perimeter R Velocity Capacity Gapointy Gapointy Channel Size Gatomet Channel Size Channel Size	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3568 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 = $\pi x 0.53^{2}/8 + 0.53 x 0.53/2 = \pi x 0.53/2 + 0.53/2 x 2 = 0.246 / 1.35 =$ 0.218 / 0.313 city for Additional 2m width Chai $\pi x 2^{2}/8 + 2 x 2/2 = \pi x 2/2 + 2/2 x 2 = 3.571 / 5.142 =$	1 in 1 in = nnel at 1 in Stream	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182 1.27 0.313 69.77 Critical 2000 250 3.571 5.142 0.694 3.10 11.069 600	m3/s % years (m2) (m2) (m2) (m2) (m2) (m2) (m3/s % section (mm) (m2) (m) (m) (m2) (m) (m) (m2) (m) (m) (m) (m) (m2) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	ок n of Existing	• $i = \frac{a}{(t_d + b)^c}$ (less than 90%, for 10% siltation allowand Channel)
Utilization Utilization UChannel 3 (Zone [A1 + B2]) Runoff Estimation Design Return Period Paved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, 1* Design Discharge Rate, Q U Channel Size Gradient Area Wetted Perimeter R Velocity $v = \frac{R^{\frac{1}{n}}{n} R^{\frac{1}{2}} S_{f^{\frac{1}{2}}}$ Capacity Utilization 2m Channel (Checking Capa U Channel Channel Size Gradient Area Wetted Perimeter R Velocity Channel Size Gradient Area Wetted Perimeter R Velocity Capacity Channel Size Gradient Area Wetted Perimeter R Velocity Capacity Gonom Channel at Connectic	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3568 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 = $\pi x 0.53^{2}/8 + 0.53 x 0.53/2 = \pi x 0.53/2 + 0.53/2 x 2 = 0.246 / 1.35 =$ 0.218 / 0.313 city for Additional 2m width Char $\pi x 2^{2}/8 + 2 x 2/2 = \pi x 2/2 + 2/2 + 2/2 x 2 = 3.571 / 5.142 =$ con Point along Existing Channel/	1 in 1 in = nnel at	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182 1.27 0.313 69.77 critical 2000 250 3.571 5.142 0.694 3.10 11.069 600 250	m3/s % years (m2) (m2) min mm/mm m3/s (mm) (m2) (m) (m) (m) (m2) (m) (m) (m) (m) (m2) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	ок n of Existing	• $i = \frac{a}{(t_d + b)^c}$ (less than 90%, for 10% siltation allowand Channel)
Utilization Utilization UDesign Return Period Paved Area Uppaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, 1* Design Discharge Rate, Q UChannel Channel Size Gradient Area Wetted Perimeter R Velocity $v = \frac{R^{\frac{1}{6}}{n} R^{\frac{1}{2}} S_{j}^{\frac{1}{2}}$ Utilization 2m Channel (Checking Capa U Channel Size Gradient Area Wetted Perimeter R Velocity Utilization 2m Channel (Checking Capa Uthanel Size Gradient Area Wetted Perimeter R Velocity Capacity Capacity Goomm Channel at Connection Goomm Channel At Connection U Channel Channel Size	+ [A2 + B1]) 1700 + 1868 = 176 + 2009 = 3568 x 0.95 + 2185 x 0.35 = 0.278 x 4154 x 189 / 1000000 = $\pi x 0.53^{2}/8 + 0.53 x 0.53/2 = \pi x 0.53/2 + 0.53/2 x 2 = 0.246 / 1.35 =$ 0.218 / 0.313 city for Additional 2m width Chai $\pi x 2^{2}/8 + 2 x 2/2 = \pi x 2/2 + 2/2 x 2 = 3.571 / 5.142 =$	1 in 1 in = nnel at 1 in Stream	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182 1.27 0.313 69.77 Critical 2000 250 3.571 5.142 0.694 3.10 11.069 600	m3/s % years (m2) (m2) (m2) (m2) (m2) (m2) (m3/s % section (mm) (m2) (m) (m2) (m) (m2) (m) (m2) (m) (m2) (m) (m) (m2) (m) (m) (m2) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	ок n of Existing	• $i = \frac{a}{(t_d + b)^c}$ (less than 90%, for 10% siltation allowand Channel)
Utilization Utilization Utilization Utilization Utilization Design Return Period Paved Area Unpaved Area Total Equivalent Area Time of Concentration Rainfall Intensity, 1* Design Discharge Rate, Q Uthannel Channel Size Gradient Area Wetted Perimeter R Velocity Utilization 2m Channel (Checking Capa Utilization 2m Channel Size Gradient Area Wetted Perimeter R Velocity Channel Size Gradient Area Wetted Perimeter R Velocity Channel Size Gradient Area Wetted Perimeter R Velocity Channel Size Gradient Area Wetted Perimeter R Velocity Capacity Channel Size Gradient Area Mathematical Connection Channel Size Gradient Area	$\frac{1700 + 1868}{176 + 2009} = 3568 \times 0.95 + 2185 \times 0.35 = 0.278 \times 4154 \times 189 / 1000000 =$ $\frac{\pi \times 0.53^{*2}/8 + 0.53 \times 0.53/2 = \pi \times 0.53 / 2 + 0.53/2 \times 2 = 0.246 / 1.35 = 0.218 / 0.313$ City for Additional 2m width Chair $\frac{\pi \times 2^{*2}/8 + 2 \times 2/2 = \pi \times 2 / 2 + 2/2 \times 2 = 3.571 / 5.142 =$	1 in 1 in = nnel at 1 in Stream	62.77 10 3568 2185 4154 5 189 0.218 525 250 0.246 1.350 0.182 1.27 0.313 69.77 critical 2000 250 3.571 5.142 0.694 3.10 11.069 600 250 0.321	m3/s % years (m2) (m2) (m2) (m2) (m2) (m2) (m3/s % section (mm) (m2) (m) (m2) (m) (m2) (m) (m2) (m) (m2) (m) (m2) (m) (m2) (m) (m2) (m) (m2) (m) (m2) (m) (m2) (m) (m2) (m) (m2) (m) (m) (m2) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	ок n of Existing	• $i = \frac{a}{(t_d + b)^c}$ (less than 90%, for 10% siltation allowand Channel)

Appendix C - Reference Drawings




ALTERNATIVE TOP SECTION FOR PRECAST CONCRETE COVERS / GRATINGS


NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE SHALL BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2 OR F2 AS APPROPRIATE.
- 4. FOR DETAILS OF JOINT, REFER TO STD. DRG. NO. C2413.
- 5. CONCRETE TO BE COLOURED AS SPECIFIED.
- UNLESS REQUESTED BY THE MAINTENANCE PARTY AND AS DIRECTED BY THE ENGINEER, CATCHPIT WITH TRAP IS NORMALLY NOT PREFERRED DUE TO PONDING PROBLEM.
- 7. UPON THE REQUEST FROM MAINTENANCE PARTY, DRAIN PIPES AT CATCHPIT BASE CAN BE USED BUT THIS IS FOR CATCHPITS LOCATED AT SLOPE TOE ONLY AND AS DIRECTED BY THE ENGINEER.
- FOR CATCHPITS CONSTRUCTED ON OR ADJACENT TO A FOOTPATH, STEEL GRATINGS (SEE DETAIL 'A' ON STD. DRG. NO. C2405 /2) OR CONCRETE COVERS (SEE STD. DRG. NO. C2407) SHALL BE PROVIDED AS DIRECTED BY THE ENGINEER.
- 9. IF INSTRUCTED BY THE ENGINEER, HANDRAILING (SEE DETAIL 'J' ON STD. DRG. NO. C2405 /5; EXCEPT ON THE UPSLOPE SIDE) IN LIEU OF STEEL GRATINGS OR CONCRETE COVERS CAN BE ACCEPTED AS AN ALTERNATIVE SAFETY MEASURE FOR CATCHPITS NOT ON A FOOTPATH NOR ADJACENT TO IT. TOP OF THE HANDRAILING SHALL BE 1 000 mm MIN. MEASURED FROM THE ADJACENT GROUND LEVEL.
- 10. MINIMUM INTERNAL CATCHPIT WIDTH SHALL BE 1 000 mm FOR CATCHPITS WITH A HEIGHT EXCEEDING 1 000 mm MEASURED FROM THE INVERT LEVEL TO THE ADJACENT GROUND LEVEL. AND, STEP IRONS (SEE DSD STD. DRG. NO. DS1043) AT 300 c/c STAGGERED SHALL BE PROVIDED. THICKNESS OF CATCHPIT WALL FOR INSTALLATION OF STEP IRONS SHALL BE INCREASED TO 150 mm.
- 11. FOR RETROFITTING AN EXISTING CATCHPIT WITH STEEL GRATING, SEE DETAIL 'G' ON STD. DRG. NO. C2405 /4.
- 12. SUBJECT TO THE APPROVAL OF THE ENGINEER, OTHER MATERIALS CAN ALSO BE USED AS COVERS / GRATINGS.

	A	MINOR AMENDMENT.	Original Signed 04.2016			
		FORMER DRG. NO. C2406J.	Original Signed 03.2015			
	REF.	REVISION	SIGNATURE DATE			
CATCHPIT WITH TRAP	C	CEDD CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT				
(SHEET 2 OF 2)	SCAL	E 1:20 JAN 1991	drawing no. C2406 /2A			
卓越工程 建設香港	V	We Engineer Hong Kong's Development				

